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High-performance liquid chromatography (HPLC) has been used extensively 
to measure equilibrium binding constants’ and, recently, to determine the actual rate 
constants of the binding processes involved in biochemical interactions2*3. In many 
of these studies the data are analyzed using the chromatographic plate height expres- 
sions presented by Horvath and Lin 4,5. These expressions are strictly applicable only 
when strong biological interactions are not present, as in the study of mass transfer 
contributions to peak spreading6s7, or when the interactions are very weak and can 
be described adequately by a linear equilibrium isotherm. However, many of the 
experiments aimed at measuring binding constants and sorption rates have been 
performed under conditions where the equilibrium relationships are highly non-lin- 
ear. This problem will be addressed in a later paper 8. The present discussion is con- 
fined to the chromatographic theory for systems displaying linear equilibria. 

Expressions for plate heights can be obtained by solving the partial differential 
equations that govern the movement of the sorbing species through the column. 
Briefly, the set of equations describing the conservation of mass in the packed bed, 
the equilibrium between solute and sorbate, and the nonequilibrium effects of axial 
dispersion, diffusion in the axial direction, and mass transfer into the particles are 
solved in the Laplace domain for the column response to a pulse input. It is possible 
to derive from this transformed solution expressions for the statistical moments of 
the exiting peak. The first absolute moment p1 is related to the peak retention time, 
and therefore to the strength of binding (i.e. the equilibrium constant). The second 
central moment & is related to peak spreading, caused by departures from equili- 
brium. When the exiting peak is Gaussian, & equals cr2, the variance. In general, 
however, the peak is not Gaussian, and PL; must be measured by numerical integration 
or Fourier analysis of the experimental data. 
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Both the first and second moments are combined in an expression which defines the 
chromatographic plate height, H. 

H = @ = f(geometry, solute, flow . ..) 
PL: 

(3) 

His a function of the column and packing geometry, operating conditions, the prop- 
erties of the solute, and the interactions of the solute with the mobile and stationary 
phases. For a given separation in which the system, packing and solute, is already 
defined, H is a function of the mobile phase velocity (u). One widely-used function 
is the Van Deemter equation (eqn. 4) 

H=A+-B+Cu 
u 

(4) 

The first two terms include the effects of molecular diffusion in the axial direction 
and axial dispersion, while the third term accounts for the contributions from fluid 
film mass transfer, particle diffusion, and slow sorption kinetics. 

Giddings9 argued that this plate height expression is too simplistic because it 
does not consider flow and diffusive coupling in the void spaces between the particles. 
According to Giddings, “flow and radial diffusion work simultaneously to exchange 
molecules between flow paths of unequal velocity. A molecule in a fast streampath 
may end up in a slow one at the next particle diameter, or it can diffuse laterally into 
a new flow channel or velocity extreme”. Instead of having a constant axial dispersion 
contribution to H (the A term in eqn. 4), Giddings argued that it should have some 
flow-rate dependence, and he proposed a term with the form a/(1 + bu-‘). This 
coupling term, however, did not agree well with experimentslO, and other forms have 
been proposed’ l. 

In order to include coupling between flow and diffusion, Horvath and Lin 
chose a simple model in which each particle is surrounded by a stagnant film of 
thickness 6. Axial dispersion occurs only in the free-streaming fluid outside this stag- 
nant film, whose thickness depends inversely on the fluid velocity. Thus the residence 
time of the free-streaming fluid and, therefore, the axial dispersion plate height con- 
tribution depend on the fluid vklociti. To obtain an expression for 6, Horvath and 
Lin turned to the “free-surface” cell model of Pfeffer and Happellz for mass and 
heat transfer to a bed of spherical particles. These authors found that, for high Peclet 
numbers, the Sherwood number is proportional to the Peclet number to the one- 
third power. 

Sh = 12Pe’/3 (5) 
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(a is a function of E, the void fraction, and Pe is identical to the reduced velocity v 
used in refs. 4 and 5). From the definition of S/z, the fluid film mass transfer coefficient 
kf is 

ShD 
kf=-..e= 

4 
(6) 

6 was obtained by equating the stagnant layer thickness to D/k‘, the Nernst diffusion 
layer thickness 

Using this, Horvath and Lin derived their axial dispersion plate height equation, 
which has the form a/(1 + b~?/~). 

There are a number of problems with this plate height equation. In the first 
place, eqn. 5 for the Sherwood number is valid for large Peclet numbers. At Pe less 
than about 50, the Sherwood number approaches a constant which depends on E (ref. 
12). Thus at low Pe, or low reduced velocities, the stagnant boundary layer thickness 
approaches a constant value, and so should the plate height. The expression derived 
by Horvith and Lin is strictly applicable for Pe > 50, although it is plotted in Fig. 
6 of ref. 4 for Pe = 10-l to 105. In the region Pe z 1, where the coupling effect is 
most likely to be observed, the Horvath and Lin equation cannot be used. The fluid 
film plate height expression proposed in ref. 4 is also invalid for small Pe, since it, 
too, was derived using eqn. 5. At higher Pe, the predicted velocity dependence is so 
small that in most cases it would be well within experimental error. 

The effects of axial dispersion will be most important when the effects of slow 
sorption kinetics and the mass transfer contributions to peak spreading are small 
(small 8, Pe). The various plate height contributions, calculated using Horvith’s 
equations, are plotted in Fig. 1 for a solute that diffuses into the particles but does 
not adsorb. Only for Pe < 200 are the deviations from linearity in the axial dispersion 
and fluid film mass transfer contributions noticeable. At these smaller Peclet num- 
bers, the validity of the equation proposed by HorvPth and Lin is most questionable. 
When sorption occurs, the mass transfer contributions increase, and axial dispersion 
is even less important. Finally, if there is a slow desorption step, the relative impor- 
tance of axial dispersion is reduced even further, as illustrated in Fig. 2 for a weakly 
adsorbing solute. 

The basis for the calculation of the film thickness, 6, is also questionable. The 
film mass transfer coefficient kf, used by Horvath and Lin to determine 6, was derived 
from the concentration boundary layer profile obtained by solving the coupled mo- 
mentum and mass conservation equations for flow around a sphere’*. The correct 
film thickness would be the concentration boundary layer thickness, which will be 
less than the Nernst diffusion layer thickness used by Horvath and Lin. This differ- 
ence will be more pronounced at higher Reynolds numbers. 

The remaining terms of Horvath and Lin’s general plate height equation (eqn. 
14 in ref. 5) account for the contributions from fluid film mass transfer, diffusion into 
the particle, and slow desorption. It can be shown that these are identical to the plate 
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Fig. 2. Reduced plate heights calculated using eqn. 14, ref. 5, for a weakly adsorbing solute. A = 10, 
w = 2.5, 0 = 2, k,, = 0.75, k’ = 1.0, dp = 0.005 cm, D = 1 . 1O-6 cm2/sec, kd = 0.5 set-‘. 
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heights assembled from the expression for the statistical moments derived by Ku- 
cera13 and Furusawa et ~1.‘~ for short pulses. From the model of Furusawa et al.: 

Pl = 5 {E + (1 - &) /I + (1 - E) p&} 

&+(l +/I(1 +?)I’+ 

(1 - 4 @W 

and, therefore, with eqn. 3, the plate height is given by 

f+2d,+ 
P% 

2u -e)[(B+P$x@+&)+~~o (9) 

[e + (1 - 4 B + (1 - 4 P&l2 

where Pe, = uodp/Ez. The second term on the right hand side includes the effects 
mentioned above. These contributions are identical to the corresponding terms in 
Horvath and Lin’s equation, using eqn. 6 for the fluid film mass transfer coefficient. 
The nomenclature of the two derivations is compared in Table I. 

TABLE I 

COMPARISON OF EQN. 14, REF. 5 WITH EQN. 10 

ReJ 5 Thl paper 

K 

ko 

k 

Y 

e 

61D 

F “II3 
rp 

l/15 

BU - 4 

&l - 4 = K~Qtn.dl - 4 = 5 
e + (1 - &)j? .5+(1-EE)B a 

pe = !f?!!! 
ED 

BD 

0, 

kr 

KL 

~,Qm.x(l - 4 
& + (1 - E)/!l 
u = UO/& 



164 NOTES 

The first term in eqn. 9 includes axial mixing and diffusion and would encom- 
pass any coupling phenomena. In many cases, explicitly including coupling adds 
unnecessary complexity to the overall plate height expression. Coupling is observed 
at small Pe (w l), i.e. when the flow-rate or particles are extremely small, or when 
the diffusitivities are large. The expression proposed by Horvbth and Lin for axial 
dispersion is not valid in this range, and its validity for higher Pe is arguable, based 
on the preceding discussions. 

We believe that a reasonable approach to the problem of estimating axial 
dispersion plate height contributions is to use directly correlations for dispersion 
coefficients in packed beds. The axial dispersion coefficient is often given in the form 
of a packing Peclet number, Pe,, similar to the flow Peclet number Pe. In their study 
of axial dispersion in packed beds, Miller and King I5 found that the packing Peclet 
number is roughly constant at low Reynolds number for a wide range of particles 
sizes. Pulse studies have confirmed this result for chromatographic packings at Pe 
> 50 (refs. 7 and 16). An axial dispersion coefficient in this form corresponds to a 
constant plate height contribution (A = 2d,,/Pe,, B = 0 in eqn. 4). This is, of course, 
valid when coupling is unimportant. 

If it becomes necessary to treat systems with small reduced velocities, one can 
turn to more complete expressions for Pe,. Eidsath et al.” recently published a 
thorough investigation of axial dispersion phenomena over a very wide range of Pe. 
Their results are similar to those of Miller and King at Pe x 10, although they do 
find a weak dependence on Pe (Pe, x Pe -“.2). At very low Pe, axial dispersion 
approaches the molecular diffusion limit, and Pe, becomes directly proportional to 
Pe. One could fit a number of functional forms to the intermediate region and still 
be within experimental error. 

A SIMPLIFIED PLATE HEIGHT EQUATION 

As stated previously, Horvath and Lin have used eqn. 6, valid for Pe > 50, 
to write kr in terms of the fluid velocity. For this and other possible relations, kr 
depends rather weakly on the fluid velocity. Over the range of fluid velocity in a 
typical experiment, a factor of about 3 to 10, kt can often be assumed constant. If 
Pe, and kf are constants, then eqn. 10 is of the Van Deemter form (with B = 0), 
where the C term takes into account the mass transfer and slow desorption. Eqn. 9 
can then be rewritten in a simpler form: 

H _ 24 + 2 K’lh + (0: - E + K)2/KoLap] u. 

P% (a + K)2 

where 

K’ = (1 - 4 P& = (1 - 4 ~pQmaxK~ 

maximum bound solute = 
column volume 

. KL 

a = E + (1 - E) /I = fraction of column volume available to the solute 
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The simple form of this plate height equation makes it convenient for analyzing 
experimental results. Since the particle mass transfer and slow kinetics contributions 
have the same fluid velocity dependence, mass transfer effects must be measured in 
separate control experiments in which all binding is suppressed. The column fraction 
available to the solute (a), is obtained directly from the first moment, or retention 
time (eqn. 8) in the control experiment. R is then obtained from the retention time 
of the sorbed species. Finally, kd, the desorption rate constant, can be found from 
the slope of the H V.S. u. plot for the sorbed material. It is important to stress that 
this analysis is strictly valid only when the sorption rate equation is linear (i.e. when 
one is operating in the linear region of the isotherm). If the axial dispersion coefficient 
is desired, the intercept must be corrected for the slight velocity dependence of kf 
(ref. 7). 

SYMBOLS 

UP 

i 

hP 

kd 
kf 
UO 

If, 
Di 
Ez 
H 
K 

KL 
KOL 
R 
L 

Q mm 

Pe 

pep 

Sh 

i 

& 

surface area of particles per unit bed volume (cm- ‘) 
bulk liquid solute concentration (g cmV3) 
particle diameter (cm) 
reduced plate height (= H/d,) 
desorption rate constant (set- ‘) 
fluid film mass transfer coefficient (cm set - ‘) 
liquid superficial velocity (cm set- ‘) 
liquid linear velocity (aO/.s) (cm set-‘) 
solute diffusivity in bulk liquid (cm2 set- ‘) 
effective particle diffusion coefficient (cm* set- ‘) 
axial dispersion coefficient (cm2 set- ‘) 
plate height (cm) 
linear equilibrium constant (= Q,,,KL) (cm3 g- ‘) 
binding constant (cm3 g- ‘) 
overall mass transfer coefficient (cm set- ‘) 
K~Qmax~p (1 - 4 

bed length (cm) 
maximum loading capacity (g solute/g particle) 
Peclet number (= uodp/De) 
packing Peclet number (= uodp/Ez) 
Sherwood number (= k&,/D) 
column liquid fraction 
particle porosity 
stagnant boundary layer thickness (cm) 
column void fraction 
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CL1 first absolute moment of peak (set) 

i42 second central moment of peak (sec2) 
V reduced velocity (= Pe) 

PP particle density (g cm - 3 particle) 
fsz variance of Gaussian peak (sec2) 
0 ratio of bulk diffusivity to diffusivity in pore liquid 
s2 constant in eqn. 5 
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